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Stability of certain families of ideal magnetohydrodynamic equilibria
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The equations of ideal magnetohydrodynamic equilibria posses a number of symmetries that may be used to
generate a family of hitherto unknown equilibria if there exists a foliation of the original one by magnetic
surfaces. In addition to the possibility of producing analytic equilibria from old ones, this family is studied to
find among its members those with minimal energy, those lasting longer under slightly resistive conditions, and
those linearly stable. It is shown that in general none of these properties implies any other, thus clarifying the
difference among these concepts.
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I. INTRODUCTION

Analytical magnetohydrodynamic~MHD! equilibria are
notoriously difficult to find. The best known examples i
clude those where the velocity lies in a plane and the m
netic field is orthogonal to it@1#, plus a number of static
configurations, including the axisymmetric ones satisfy
the Grad-Shafranov equation, such as the Shafran
Solov’ev family @2#; a recent class of nonaxisymmetric sta
equilibria is presented in Ref.@3#. In these circumstances, th
method stated in Ref.@4# for generating new equilibria start
ing with an initial one possessing a foliation of magne
surfaces is welcome. This family is an excellent tool
clarify a number of concepts on ideal MHD equilibria, su
as the possible existence of attractive equilibria, the stab
of minimal energy ones, and their relation with those last
longer under slightly resistive conditions.

Let us begin by recalling the basic ideas in Ref.@4#. An
ideal MHD equilibrium with velocityV, magnetic fieldB,
densityr, and total~kinetic plus magnetic! pressureP* sat-
isfies, after normalization of constants,

rV•“V2B•“B1“P* 50,

“3~V3B!50,

“•B5“•rV50. ~1!

Assume also that the plasma is incompressible,“•V50.
This does not necessarily mean that the density is cons
although it is along streamlines:V•“r50. The fact that“
3(V3B)50 means thatV3B is locally the gradient of a
scalar functionc. c is unique, except by additive constan
in any simply connected subset of the domainV, and the
level setsc5const form a foliation of this, providedV3B
Þ0 at every point. Since the equilibria whereV is collinear
with B ~or simply zero! are very important, they need a sep
rate treatment. The main hypothesis is the existence
subdomainU of V of a foliation of magnetic surfaces: i.e
there exists inU a functionc such that“cÞ0 almost ev-
erywhere, andB•“c5V•“c50. The normal vector“c is
determined up to a factor at every point whereV andB are
not collinear. If this happens everywhere inU, the possibili-
ties are manifold:B may be ergodic inU, a single field line
1063-651X/2003/67~1!/016403~6!/$20.00 67 0164
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being dense, so thatc must be constant. In the opposi
situation, there may exist a family of magnetic surfaces w
two degrees of freedom, such as any cylindrical surfa
when the field is unidirectional; or there could be a foliati
with the magnetic field being ergodic in almost every s
face, such as the classical toroidal case of field lines wind
up almost every torus~the irrational ones! ergodically. These
cases are comparatively simple: magnetic surfaces may
locally, but their extensions may have self-intersections
every conceivable way. Let us therefore simply admit t
existence of a foliation, labeledc, in U such that the velocity
and field are tangential to the surfaces. We could admic
failing to be smooth at some discrete points: e.g., when se
rate surfaces coalesce for a certain value ofc. However, we
need the level surfacesSc to be continuous in the following
sense: for any smooth functionf in U, the function

c→E
Sc

f ds

is continuous.U may be immersed inV, or the boundary]U
be part of]V. It is known that islands of the structured fie
may exist in a medium of chaotic plasma, and this is a f
ture common to many Hamiltonian chaotic phenomena: s
e.g., Ref.@5#. Thus it is reasonable to admit the possibili
that our domainU may not be the whole ofV. Finally, we
assume that the densityr is constant on any level surface
This does not follow from the incompressibility of th
plasma except when a single streamline is dense at the
face, but it holds in many important cases, e.g., in toroi
confinement.

II. THE FAMILY OF EQUILIBRIA

Let us recall from@4# the transformations that keep th
state of equilibrium:

r15a~c!r,

B15b~c!B1c~c!ArV,

V15
c~c!

a~c!Ar
B1

b~c!

a~c!
V,
©2003 The American Physical Society03-1
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P1* 5CP* , ~2!

wherea, b, c are functions ofc andb22c25C is constant in
U; hereafter we will omit, for simplicity, the dependence
c of a, b, andc from our equations. So far we have esse
tially explained the contents of Refs.@3,4#. Taking the mag-
nitudeArV instead of the velocity the first and last equatio
uncouple from the rest and may be ignored; and in term
the Elsässer variablesP5B1ArV, Q5B2ArV the system
becomes

P15~b1c!P,

Q15~b2c!Q,

~b1c!~b2c!5C. ~3!

The constantC may be analyzed by different arguments. A
sume thatU is submerged inV and that we wish the new
equilibrium inU to connect smoothly with the old one in th
rest ofV. Since the total pressure is continuous in interfac
necessarilyC51. Another setting is as follows: assume, f
this point only, that the density is constant~taken as 1! and
that the new equilibrium is a product of the evolution of t
old one after a slight perturbation. In mathematical term
there exists a~heteroclinic! trajectory of the MHD dynamica
system connecting both points. ProvidedV•nu]U5B•nu]U
50, there are a number of integrals invariant by MHD ev
lution. These are the energy, the cross helicity, and the m
netic helicity. The last one is awkward to handle, but t
conservation of the first two means

E
U

B1
21V1

2 dV5E
U

B21V2dV,

E
U

B1•V1dV5E
U

B•VdV. ~4!

This means

E
U

~b1c!2P2dV5E
U

P2dV,

E
U

~b2c!2Q2dV5E
U

Q2dV. ~5!

Let us denoteg5b1c, and assumeCÞ0, so thatg never
vanishes andb2c5C/g. The first equation imposes a con
straint ong,

E
U

~g221!P2dV50, ~6!

while the second one determines, except for the sign,
value ofC:

E
U
S C2

g2
21D Q2dV50. ~7!
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The caseC50 implies that the plasma is in an alfve´nic state:
B156V1. This class of equilibria is invariant by the tran
formations in Eq.~1! and lies apart from others in an evolu
tionary sense, as described by the conservation of energy
cross helicity. We will exclude them from our consideratio
and assume thatCÞ0 is a constant, fixed by some argume
such as the ones above. Thusg(c)Þ0 for every levelc.

Incidently, let us note that field-aligned equilibria are i
variant for the transformations of Eq.~2!: in particular any
static equilibrium only yields field-aligned ones. For the
Eq. ~2! may be written as

B15k coshf ~c!B,

V15k sinhf ~c!V, ~8!

for some functionf.

III. EXAMPLES

We will consider a few simple examples in order to sho
the usefulness of the transformations in Eq.~2! for genera-
tion of new equilibria. Let us consider the class of equilib
of the form

V5„Vx~x,y!,Vy~x,y!,0…,

B5~0,0,B~x,y!!, ~9!

whereV andB satisfy

“•V50,

V•“r50,

V•“B50,

V•“S 1

2
V21

p

r D50. ~10!

It is known that conservation of the density and magne
field size along streamlines and the Bernoulli law yield
ideal equilibrium. The magnetic surfaces are vertical cyl
ders whose sections with horizontal planes are the stre
lines of the flow. Applying Eq.~2! with a51 yield

B15bB1cArV,

V15
c

Ar
B1bV. ~11!

The new streamlines are not horizontal ifcÞ0, and the field
lines are not vertical. The plasma flows at an angle tha
constant in every magnetic surface, but may vary from on
the other. What is constant through the domain is the rela
between the new and old electric fields:V13B15CV3B.

A general feature of the transformations of Eq.~2! is that
one may obtain nonstatic equilibria from static ones, alb
always with field-aligned velocity. Thus, if we start with
3-2
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classical toroidal equilibrium, say the Shafranov-Solov’
one given by the flux function„in cylindrical coordinates
(R,y,f); see Ref.@2#…

c~R,y!5R22y22~12R2!2,

B~R,c!5
1

R

]c

]y
eR2

1

R

]c

]R
ey1

2Ac11

R
ef , ~12!

whose magnetic axis correspond toc55/4 and the separatrix
~where the surfaces cease to be toroids and intersect a
origin! is c521. Take as beforeb5k coshf, c5k sinhf:
we find a family of nonstatic equilibria

B15k~coshf !B,

V15k~sinhf !B. ~13!

f only needs to be constant along magnetic field lines, wh
allows for a large variety of flows. If we take in particula
f 5 f (c), this always holds. Take for simplicityk51; since
the hyperbolic cosine is an even function and reaches
minimum at zero, whereas the hyperbolic sine is an o
function, the new magnetic field will enhance the old one
any f, starting with it at the flux surfacec50 and making it
larger symmetrically inc. The velocity is zero atc50,
while it takes opposite directions at both sides of this s
face: the plasma flows along the field lines for positive~say!
c and in the opposite directions for negativec. This change
of direction of the flow at a certain magnetic surface is
feature uncommon in theoretical analysis.

Finally, let us mention that in Refs.@4,6# a different ex-
ample appears and applications to astrophysical jets
claimed.

IV. ENERGY MINIMA

We will study which one of the equilibria in our class h
minimal energy. That is, we need to minimize

E~g!5E
U

B1
21r1V1

2dV

5E
U

P1
21Q1

2dV

5E
U

g2P21
C2

g2
Q2dV. ~14!

C is fixed andg is allowed to vary over the open set o
continuous real functionsg defined in the interval of levels
of U, @c1 ,c2#, which do not vanish anywhere in the inte
val.

It is intuitively obvious thatE cannot have maxima: by
takingg large whereP2 is large, or small whereQ2 is large,
we may obtain arbitrarily large energies. Let us find the cr
cal points of the functional: denoting by (,) the scalar pro
uct in L2@c1 ,c2#, we may write
01640
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E~g!5~gP,gP!1S C

g
Q,

C

g
QD , ~15!

so that the differential in the direction ofh is

E8~g!~h!5~gP,hP!1S C

g
Q,2

Ch

g2
QD

5E
U

hS gP22
C2

g3
Q2D dV. ~16!

Let us use now a well-known theorem@7#: the level setsSc
are smooth surfaces for almost everyc and for any continu-
ous functionG in U,

E
U

Gu“cu dV5E
c1

c2
dcE

Sc

G ds, ~17!

where s denotes the area measure. Assuming“cÞ0 ~or
simply 1/u“cu integrable! we obtain

E8~g!~h!5E
c1

c2
h~c!dcE

Sc

1

u“cu S gP22
C2

g3 D ds.

~18!

In the critical points ofE, this integral must be zero for an
h such thatg1hÞ0 anywhere. This obviously implies

E
Sc

1

u“cu S gP22
C2

g3 D ds50, ~19!

for almost everyc. Since, as assumed in the Introductio
this is a continuous function ofc, the integral vanishes fo
all level sets. Hence

g~c!4E
Sc

P2

u“cu
ds5C2E

Sc

Q2

u“cu
ds. ~20!

Since obviouslyg and2g yield the same energy, this iden
tity determines uniquely the possible energy minimum in o
class of equilibria, provided none of these surface integ
vanish, which means that the plasma cannot be in an alfv´nic
state in the whole magnetic surface.

These solutions correspond really to minima ofE: if we
consider the second differential of the energy,

E8~g!~h!5S gP22
C2

g3
Q2,hD ,

E9~g!~h,h!5S P21
3C2

g4
Q2,h2D

5E
U

h2S P21
3C2

g4
Q2D dV, ~21!

which is strictly positive for any nontrivial situation.
3-3
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These minima may be identified as follows: since Eq.~14!
means

E
Sc

P1
22Q1

2

u“cu
ds50,

we have

E
Sc

B1•V1

u“cu
ds50. ~22!

Thus they correspond to magnetic fields and velocities
are orthogonal in the mean in every magnetic surface.

General MHD equilibria are~linearly! stable if no small
perturbation of them grows exponentially, although even
ally they may drift away and their behavior becomes u
known. Linear stability is guaranteed if they are loc
minima of the energy~see, e.g., Ref.@8#!. Were they strict
minima, they would also stable in the long term; no soluti
close enough could leave the energy well. Such points, h
ever, must be isolated in the phase space of magnetohy
dynamic evolution. Since any equilibrium state with a foli
tion of magnetic surfaces lies in a continuum of equilibria
determined by the transformations in Eq.~1!, it cannot be a
strict minimum, because there are other critical points a
trarily close to it. If such strict minima exist at all, the
certainly cannot be found by solving the Grad-Shafran
equation.

On the other hand, we have found strict minima with
our class, which means that they are minima for the per
bations constant at every magnetic flux surface. One may
if they are stable in the general sense, i.e., allowing for
neric perturbations. Since every equilibrium state whereB
•V50 everywhere satisfies the conditions of Eq.~16!, the
classical configurations of Sec. III with velocity and ma
netic field orthogonal are minima in their class. Unfort
nately not even the continuous spectrum needs to be s
for them @1#. We must conclude that perturbations with
every magnetic surface may rend these equilibria unstabl
is indeed the case presented in Ref.@1#.

Conversely, field-aligned equilibriaV5l(c)B have a
stable continuum@1#, but they do not satisfy Eq.~16! unless
they are static:l50. If they are not minima in our restricte
class, much less can they be so for general perturbati
Thus neither of these concepts implies the other.

V. RESISTIVE PLASMAS

Ideal MHD does not hold in the long run: there is alwa
some resistivity and viscosity and therefore no real MH
equilibrium without some forcing. However, an ideal equ
librium decays only by the effects of ohmic dissipation a
energy diffusion, which are small for most physically inte
esting plasmas, so that while the plasma evolution does
stop at ideal equilibria it should slow there. It seems wor
while to find, at least among the restricted class of equilib
we are studying, which one has smaller dissipation a
therefore lasts longer in a resistive setting. One could exp
that minima of energy are good candidates for that. For
01640
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purpose we will assume that the density is constant~normal-
ized to 1! and that the Prandtl number~quotient of resistivity
and viscosity! is also 1. Calculations simplify in this impor
tant case~see Ref.@9#!. We also assume that]U is formed by
a single magnetic surfacec5c1, i.e., there is no hole within
U where the foliation breaks down; this is indeed the us
case.

The dissipative term of the energy is, except by a posit
factor,

E
U

DV•V1DB•B dV5
1

2E]U

]~V21B2!

]n
ds2E

U
u“Vu2

1u“Bu2dV. ~23!

Thus the losses of energy are due to two factors: the flux
energy through]U and the ohmic heating within the domain
Since we wish to leave the field and velocity unchang
outsideU, it seems reasonable to impose that the norm
differentials ofV1

2 andV2 must coincide at]U, and the same
for the magnetic field. This means

]P1
2

]n
5

]P2

]n
,

]Q1
2

]n
5

]Q2

]n
. ~24!

Since]U is formed by the magnetic surfacec5c1, and

]P1
2

]n
52g~c1!g8~c1!P21g~c1!2

]P2

]n
~25!

~analogously withQ1), the condition to impose upong is

g~c1!51,

g8~c1!50. ~26!

The alternativeg(c1)521 reduces to this by changingg
→2g. Now we must minimize the functional

D~g!5E
U

u“P1u21u“Q1u2dV

5E
U

u“~gP!u21U“S C

g
QD U2

dV, ~27!

when g belongs to the space of functions satisfying t
above boundary conditions. Perturbationsh such thatg1h
lies also in this space must satisfy that both the values oh
and h8 at c1 are zero. The differential ofD at g in the
direction ofh is

D8~g!~h!5~“~gP!,“„hP!…1C2S“S 1

g
QD ,“S 2

h

g2
QD D .

~28!

By assuming thath satisfies the boundary conditions abo
and using Gauss’s theorem,
3-4
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D8~g!~h!5E
U

hFP•D~gP!2
C2

g2
Q•DS 1

g
QD GdV

5E
c0

c1
h~c!dcE

Sc

1

u“cu FP•D~gP!

2
C2

g2
Q•DS 1

g
QD Gds. ~29!

c0 corresponds to some magnetic axis or point. Since
range of possibleh is large enough, the surface integral mu
vanish for everyc. This is a nonlinear second-order diffe
ential equation ing, obtained by developing the Laplacian
The initial conditions at c1 are as statedg(c1)51,
g8(c1)50, so that solutions exist at least in some inter
(c2 ,c1#. Since the equations are nonlinear, there is, in p
ciple, no guarantee that they extend up toc0, but it is not
difficult to see that this is indeed the case. The equa
satisfied byg may be abbreviated to

L1~g!5L2~1/g!, ~30!

whereL1 andL2 are linear differential operators. It is know
that if the solution cannot be extended pastc2 , because it
blows up there:ug(c2)u→`. This means that 1/g and there-
fore L2(1/g) remain bounded atc2 . Writing L2(1/g)5F,
the equation becomesL1(g)5F, for a bounded independen
term F; since all the terms of the equation are well behav
nearc2 , and L1 is linear, the solution cannot blow up a
c2 , against the first hypothesis. Thusg is defined in the
whole interval (c0 ,c1#. Thatg cannot vanish anywhere fol
lows from a similar argument, because then 1/g would blow
up whileL1(g) would remain smooth, against the properti
of linear equations. That the solution behaves well at the a
c0 follows from a study of the form of the equation coef
cients, which are integrals in the magnetic surfaces, that
will not detail here. Thus there exist really unique solutio
yielding critical points of the functionalD. It is not as simple
as in the energy case to prove that they correspond
minima, but this is strongly supported by the form of t
positive functionalD; certainly rapidly varyingg yield arbi-
trarily large dissipation, so that there is no chance ofD hav-
ing a maximum. Anyway, ifP1 , Q1 is a critical point ofD,
necessarily

E
Sc

P1•DP12Q1•DQ1

u“cu
ds50, ~31!

which means

E
Sc

B1•DV11V1•DB1

u“cu
ds50. ~32!

Static equilibria satisfy Eq.~27!, as well as those, detailed i
Sec. III, of the form V5„V1(x,y),V2(x,y),0…, B
5„0,0,B3(x,y)…. These, as stated, can be unstable even
the continuous spectrum. Field-aligned velocities do no
01640
e
t

l
-

n

d

is

e
s

to

in
n

general satisfy Eq.~27!, in spite of the stability of their con-
tinuum. We see again that none of these concepts is equ
lent, nor implies any other.

VI. CONCLUSIONS

The study of the stability of ideal magnetohydrodynam
equilibria has a long and distinguished history. The m
basic notion, linear stability, considers the solutions of
MHD system linearized around a state of equilibrium, whe
all the magnitudes are time independent. The system is
stable if there are exponentially growing solutions, marg
ally stable otherwise; the most stringent condition of stabi
demands all solutions to decay, meaning that small pertu
tions of the equilibrium will tend to disappear. The additio
of a small resistivity to the ideal MHD equations introduc
the new class of the so-called resistive instabilities, which
certainly more realistic than ideal ones.

It was early recognized that an equilibrium which is
strict minimum of the total~kinetic plus magnetic! energy
would be stable, and this provided some sufficient criteria
stability. Unfortunately, equilibria simple enough to be e
pressed analytically are few, even in the restricted class
axisymmetric static ones, when they satisfy the more m
ageable Grad-Shafranov equation. Thus, more often than
all criteria of stability must be studied numerically.

Recently, a simple study of the symmetries of the MH
system has yielded a method for generating whole fami
of ideal equilibria starting from one provided with a foliatio
of magnetic surfaces, i.e., surfaces everywhere tangenti
the velocity and magnetic field vectors: most classical eq
libria satisfy this condition, which is also very desirable f
magnetic confinement. These families keep the same fo
tion of the original equilibrium, but both velocity and fiel
may vary widely otherwise. This paper begins by providing
simpler formulation, using Elsa¨sser variables, of the tranfor
mation mentioned above, which will be useful later, a
showing with a number of examples the rather surpris
properties of equilibria one may obtain from classical, us
ally static, ones. However, our main purpose is, by using
family of equilibria created using this process, the compa
son of the different notions of stability.

We work with three concepts: linearly stable equilibri
those which are energy minima among our restricted fam
and those equilibria which minimize ohmic and visco
losses when some small diffusivity is added, presuma
lasting longer under these slightly resistive conditions. O
intuition tends to think that these properties are roug
equivalent. The variational calculus needed to calculate th
extrema is far easier than the general one because of
more restricted class of equilibria under study. The res
are somewhat surprising: none of these notions implies
other, so that, for example, a minimum~in our class! of en-
ergy may be linearly unstable, thus highlighting how d
manding is the condition of maintaining the magnetic s
faces intact. Neither is this minimum more efficient
minimizing ohmic losses than other members of the fam
Also, equilibria with a stable continuous spectrum may n
3-5
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be energy minima even within our family. The exampl
showing that these concepts are different are very sim
static equilibria, equilibria where magnetic field and veloc
are orthogonal, and those where they are aligned are en
01640
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to provide counterexamples. It is hoped that these res
may be conceptually useful to clarify the different notions
stability; more generally, this family of equilibria coul
prove useful to test other magnetohydrodynamic propert
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