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Stability of certain families of ideal magnetohydrodynamic equilibria
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The equations of ideal magnetohydrodynamic equilibria posses a number of symmetries that may be used to
generate a family of hitherto unknown equilibria if there exists a foliation of the original one by magnetic
surfaces. In addition to the possibility of producing analytic equilibria from old ones, this family is studied to
find among its members those with minimal energy, those lasting longer under slightly resistive conditions, and
those linearly stable. It is shown that in general none of these properties implies any other, thus clarifying the
difference among these concepts.
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[. INTRODUCTION being dense, so that must be constant. In the opposite
situation, there may exist a family of magnetic surfaces with

Analytical magnetohydrodynami@MHD) equilibria are two degrees of freedom, such as any cylindrical surface
notoriously difficult to find. The best known examples in- when the field is unidirectional; or there could be a foliation
clude those where the velocity lies in a plane and the magwith the magnetic field being ergodic in almost every sur-
netic field is orthogonal to if1], plus a number of static face, such as the classical toroidal case of field lines winding
configurations, including the axisymmetric ones satisfyingup almost every torughe irrational onesergodically. These
the Grad-Shafranov equation, such as the Shafranowases are comparatively simple: magnetic surfaces may exist
Solov’ev family[2]; a recent class of nonaxisymmetric static locally, but their extensions may have self-intersections in
equilibria is presented in R€f3]. In these circumstances, the every conceivable way. Let us therefore simply admit the
method stated in Ref4] for generating new equilibria start- existence of a foliation, labelegd, in U such that the velocity
ing with an initial one possessing a foliation of magneticand field are tangential to the surfaces. We could adit
surfaces is welcome. This family is an excellent tool tofailing to be smooth at some discrete points: e.g., when sepa-
clarify a number of concepts on ideal MHD equilibria, suchrate surfaces coalesce for a certain valugsoHowever, we
as the possible existence of attractive equilibria, the stabilitpeed the level surfaces;, to be continuous in the following
of minimal energy ones, and their relation with those lastingsense: for any smooth functidrin U, the function
longer under slightly resistive conditions.

Let us begin by recalling the basic ideas in Réfl. An
ideal MHD equilibrium with velocityV, magnetic fieldB,
densityp, and total(kinetic plus magneticpressureP, sat-

isfies, after normalization of constants, is continuousU may be immersed i, or the boundaryU
be part ofg(). It is known that islands of the structured field
pV-VV—-B-VB+VP, =0, may exist in a medium of chaotic plasma, and this is a fea-
ture common to many Hamiltonian chaotic phenomena: see,
e.g., Ref.[5]. Thus it is reasonable to admit the possibility
that our domairlJ may not be the whole of). Finally, we
V-B=V.pV=0. (1) assume that the densipy is constant on any level surface.
This does not follow from the incompressibility of the

Assume also that the plasma is incompressiMeV=0.  5j35ma except when a single streamline is dense at the sur-
This does not necessarily mean that the density is constarhee put it holds in many important cases, e.g., in toroidal
although it is along streamline¥:- Vp=0. The fact thav confinement.

X (VX B)=0 means thatv xB is locally the gradient of a
scalar functiony. ¢ is unique, except by additive constants,
in any simply connected subset of the dom&in and the
level setsy=const form a foliation of this, provided X B Let us recall from[4] the transformations that keep the
#0 at every point. Since the equilibria wheveis collinear  state of equilibrium:

with B (or simply zerg are very important, they need a sepa-

y— | fdo
Sy

VX (VXB)=0,

Il. THE FAMILY OF EQUILIBRIA

rate treatment. The main hypothesis is the existence in a pi=a(¥)p,
subdomainU of ) of a foliation of magnetic surfaces: i.e.,
there exists inJ a function such thatV ¢s#0 almost ev- B,=b()B+c() \/;—)V,

erywhere, andB-V ¢=V-V ¢=0. The normal vectoV ¢ is

determined up to a factor at every point wh&fteandB are b

not collinear. If this happens everywhereliy the possibili- = c(¥) B+ (#)
ties are manifoldB may be ergodic irJ, a single field line a(p)\p aly) '
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P,,=CP,, 2) The caseC=0 implies that the plasma is in an alfvie state:
B,==V,. This class of equilibria is invariant by the trans-
wherea, b, c are functions of andb?—c?=C is constantin  formations in Eq(1) and lies apart from others in an evolu-
U; hereafter we will omit, for simplicity, the dependence ontionary sense, as described by the conservation of energy and
¢ of a, b, andc from our equations. So far we have essen-cross helicity. We will exclude them from our consideration
tially explained the contents of Refs3,4]. Taking the mag- and assume tha&@+# 0 is a constant, fixed by some argument,
nitude \pV instead of the velocity the first and last equationssuch as the ones above. Thugy) #0 for every levely.
uncouple from the rest and may be ignored; and in terms of Incidently, let us note that field-aligned equilibria are in-
the Elsaser variable®=B+ \pV, Q=B— pV the system variant for the transformations of E): in particular any
becomes static equilibrium only yields field-aligned ones. For them
Eqg. (2) may be written as

P,=(b+c)P,
B, =k coshf(y)B,
Q:=(b—0)Q, :
V,=ksinhf(y)V, (8
(b+c)(b—c)=C. (3

for some functiorf.
The constanC may be analyzed by different arguments. As-
sume thatU is submerged i) and that we wish the new Il. EXAMPLES
equilibrium inU to connect smoothly with the old one in the . ] . .
rest of (). Since the total pressure is continuous in interfaces, We Wil consider a few simple examples in order to show
necessariyC=1. Another setting is as follows: assume, for the usefulness of the transformations in E2). for genera-
this point only, that the density is constaitiken as Land ~ tion of new equilibria. Let us consider the class of equilibria
that the new equilibrium is a product of the evolution of the ©f the form
old one after a slight perturbation. In mathematical terms,

there exists @heteroclinig trajectory of the MHD dynamical V=(Vx(x,y),Vy(x,y),0),
system connecting both points. Providedn|,,=B-n|,y B
=0, there are a number of integrals invariant by MHD evo- B=(0,0B(x,y)), ©

lution. These are the energy, the cross helicity, and the mag- .
netic helicity. The last one is awkward to handle, but the%vherev andB satisfy

conservation of the first two means V.V=0,
f5§+v§dv:f B2+V2dV, V-Vp=0,
U U

V-VB=0,

fBl~V1dV=f B-vdV. 4
u u 1 P

v-v(§v2+— =0. (10)

This means P

It is known that conservation of the density and magnetic

f (b+c)2P2dV=f P2dV, field size along streamlines and the Bernoulli law yield an

u u ideal equilibrium. The magnetic surfaces are vertical cylin-
ders whose sections with horizontal planes are the stream-

f (b—c)zdeV=j Q2dV. 5 lines of the flow. Applying Eq(2) with a=1 yield
U U
B,=bB+c\pV,
Let us denotey=b+c, and assum€+0, so thaty never
vanishes and—c=C/y. The first equation imposes a con- c
straint on'y, Vi=—=B+bV. (13)
Jp
f (y*—1)P2dV=0, (6)  The new streamlines are not horizontatit 0, and the field
U

lines are not vertical. The plasma flows at an angle that is
constant in every magnetic surface, but may vary from one to
fhe other. What is constant through the domain is the relation
between the new and old electric fieldé; < B;=CV XB.
A general feature of the transformations of E2). is that
Q2dV=0. (7) ~ one may obtain nonstatic equilibria from static ones, albeit
always with field-aligned velocity. Thus, if we start with a

while the second one determines, except for the sign, th

value ofC:
CZ
—-1
fu ¥?
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classical toroidal equilibrium, say the Shafranov-Solov'ev
one given by the flux functiorin cylindrical coordinates E(y)=(yP,yP)+
(R, ¢); see Ref[2])

oS ) 15
yQ’yQ :

so that the differential in the direction dfis
$(RY)=R?—y*~(1-R%?,

C Ch
14 10 2\y+1 E'(y)(h)=(yP,hP)+ —Q,——Q)
B(R,aﬂ):——'ﬁeR———we +Le¢, (12) Y '
R dy RIR™Y R
C2
whose magnetic axis correspondite- 5/4 and the separatrix = f h| yP?— —Q?|dV. (16)
u Y

(where the surfaces cease to be toroids and intersect at the
origin) is =—1. Take as beford=k coshf, c=k sinhf:

we find a family of nonstatic equilibria Let us use now a well-known theor€fm]: the level setsS,

are smooth surfaces for almost everand for any continu-

B, =k(coshf)B, ous functionG in U,

2
V1=Kk(sinhf)B. (13 f G|V | dV=f d¢| Gdo, 17
u " Sy
f only needs to be constant along magnetic field lines, whic
allows for a large variety of flows. If we take in particular
f="f(y), this always holds. Take for simplicity=1; since

Itherea denotes the area measure. Assumwg#0 (or
simply 1]V ¢| integrable we obtain

the hyperbolic cosine is an even function and reaches its " 1 c?
minimum at zero, whereas the hyperbolic sine is an odd E/(y)(h):f Zh(w)dsz _< yP?2— —|do.
function, the new magnetic field will enhance the old one for 1 S¢|Vl//| v

anyf, starting with it at the flux surfacg=0 and making it (18
larger symmetrically ing. The velocity is zero aty=0,
while it takes opposite directions at both sides of this sur
face: the plasma flows along the field lines for positisay)

1n the critical points ofE, this integral must be zero for any
h such thaty+h=+0 anywhere. This obviously implies

¢ and in the opposite directions for negatiye This change )

of direction of the flow at a certain magnetic surface is a 1 p2_ C do=0 19
. . . 7| YP°— —|do=0, (19

feature uncommon in theoretical analysis. s,V ¥ y

Finally, let us mention that in Ref$4,6] a different ex-
ample appears and applications to astrophysical jets atfer almost everyy. Since, as assumed in the Introduction,

claimed. this is a continuous function af, the integral vanishes for
all level sets. Hence
IV. ENERGY MINIMA p2 Q2
4 2
; ; TR =—do=C f =—do. 20
We will study which one of the equilibria in our class has y(¥) Lw Vi 5Vl (20

minimal energy. That is, we need to minimize

Since obviouslyy and — y yield the same energy, this iden-
E(y)= f B2+ p,V2dV tity determin_e; u'niquely.the possible energy minimum in our
u class of equilibria, provided none of these surface integrals
vanish, which means that the plasma cannot be in anritfve
:J P2+ Q2dV state in the whole magnetic surface.
v bt These solutions correspond really to minimakofif we
consider the second differential of the energy,

= f Y P2+ C—2Q2dv (14)
u 2 ' C?
Y E’(y)(h)=(yP2— ?Qz,h>,

C is fixed andy is allowed to vary over the open set of
continuous real functiong defined in the interval of levels
of U, [ 1,¥5], which do not vanish anywhere in the inter- E"(y)(h,h)=
val.

It is intuitively obvious thatE cannot have maxima: by
taking y large whereP? is large, or small wher®? is large, :J' h2
we may obtain arbitrarily large energies. Let us find the criti- U
cal points of the functional: denoting by (,) the scalar prod-
uct in L2[ ¢y, 4,], we may write which is strictly positive for any nontrivial situation.

3c?
P2+ _4Q2,h2)
04

2

2 3C 2
P2+ —-Q2| dV, (21)
y

016403-3



M. NUNEZ PHYSICAL REVIEW E 67, 016403 (2003

These minima may be identified as follows: since B4) purpose we will assume that the density is constaaotmal-

means ized to 1 and that the Prandtl numbéguotient of resistivity
and viscosity is also 1. Calculations simplify in this impor-
Pi-Q3 tant casésee Ref[9]). We also assume that) is formed by
Lw V| do=0, a single magnetic surfagg= ¢/, i.e., there is no hole within
U where the foliation breaks down; this is indeed the usual
we have case.
The dissipative term of the energy is, except by a positive
J' Bl-Vld 0 - factor,
5, V9] 2770 (22

1( d(V?*+B? )
fAV~V+AB~BdV=§f —da—f [VV|
Thus they correspond to magnetic fields and velocities that /Y v dn u

are orthogonal in the mean in every magnetic surface. 2

General MHD equilibria arélinearly) stable if no small +|VB[*dV. (23
perturbation of them grows exponentially, although eventu-Thys the losses of energy are due to two factors: the flux of
ally they may drift away and their behavior becomes un-energy throughu and the ohmic heating within the domain.
known. Linear stability is guaranteed if they are local since we wish to leave the field and velocity unchanged
minima of the energy(see, e.g., Refl8]). Were they strict gytside U, it seems reasonable to impose that the normal

minima, they would also stable in the long term; no solutiongjfferentials ofv2 andV2 must coincide a#U, and the same
close enough could leave the energy well. Such points, how, the magnetic field. This means
ever, must be isolated in the phase space of magnetohydro-

dynamic evolution. Since any equilibrium state with a folia- api JP?
tion of magnetic surfaces lies in a continuum of equilibria as on - an’
determined by the transformations in Ed), it cannot be a
strict minimum, because there are other critical points arbi- 9Q2 902
trarily close to it. If such strict minima exist at all, they =T~ (24)
certainly cannot be found by solving the Grad-Shafranov gnan
equation. . . .
qu the other hand, we have found strict minima within SincedU is formed by the magnetic surfage=y, and
our class, which means that they are minima for the pertur- gp2 P2
bations constant at every magnetic flux surface. One may ask a_nl =2v(1) Yy (1) P>+ ¥( wl)zﬁ (25

if they are stable in the general sense, i.e., allowing for ge-

neric perturbations. Since every equilibrium state whre (analogously withQ,), the condition to impose upop is
-V=0 everywhere satisfies the conditions of Ef6), the

classical configurations of Sec. Il with velocity and mag- () =1,
netic field orthogonal are minima in their class. Unfortu-
nately not even the continuous spectrum needs to be stable v'(¢r)=0. (26)

for them [1]. We must conclude that perturbations within . . )
every magnetic surface may rend these equilibria unstable, d1¢ alternativey(y;)=—1 reduces to this by changing

is indeed the case presented in Ré. — — . Now we must minimize the functional
Conversely, field-aligned equilibrid/ =\(#)B have a
stable continuunil], but they do not satisfy Eq16) unless D(y):f |VP,|2+|VQ,|2dV
they are statich =0. If they are not minima in our restricted u
class, much less can they be so for general perturbations. c 2
Thus neither of these concepts implies the other. :f |V (yP)|2+ V(—Q) dv, (27
U Y

V- RESISTIVE PLASMAS when vy belongs to the space of functions satisfying the

Ideal MHD does not hold in the long run: there is alwaysabove boundary conditions. Perturbatidnsuch thaty+h
some resistivity and viscosity and therefore no real MHDIies also in this space must satisfy that both the values of
equilibrium without some forcing. However, an ideal equi-and h’ at ¢, are zero. The differential oD at y in the
librium decays only by the effects of ohmic dissipation anddirection ofh is

energy diffusion, which are small for most physically inter- L o

esting plasmas, so that while the plasma evolution does naqt,

stop at ideal equilibria it should slow there. It seems WOI’th-CB (7 (M) =(V(yP),V(hP))+C? V(;Q) ’V< - ?Q) ) :
while to find, at least among the restricted class of equilibria (28)

we are studying, which one has smaller dissipation and

therefore lasts longer in a resistive setting. One could exped®y assuming thah satisfies the boundary conditions above
that minima of energy are good candidates for that. For thisnd using Gauss'’s theorem,
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general satisfy Eq.27), in spite of the stability of their con-
dv tinuum. We see again that none of these concepts is equiva-
lent, nor implies any other.

c? 1
D'<y><h>=fuh P-A(yP)—?Q-A(;Q)

i 1
Zf h(i//)di//f 2 P-A(yP)
Yo Sy VI. CONCLUSIONS
c? 1 The study of the stability of ideal magnetohydrodynamic
_?Q'A ;Q do. (29 equilibria has a long and distinguished history. The most

basic notion, linear stability, considers the solutions of the

Yo corresponds to some magnetic axis or point. Since th&HD system_linearized ground a state of equilibrium, Where
range of possiblé is large enough, the surface integral mustall the magnitudes are time independent. The system is un-
vanish for everyy. This is a nonlinear second-order differ- stable if there are exponentially growing solutions, margin-
ential equation iny, obtained by developing the Laplacians. ally stable otherwise; the most stringent condition of stability
The initial conditions aty, are as statedy(y;)=1, demands all solutions to decay, meaning that small perturba-
y' (1) =0, so that solutions exist at least in some intervaltions of the equilibrium will tend to disappear. The addition
(¥ ,¥,]. Since the equations are nonlinear, there is, in prin-of a small resistivity to the ideal MHD equations introduces
ciple, no guarantee that they extend upitg but it is not  the new class of the so-called resistive instabilities, which are
difficult to see that this is indeed the case. The equatiogertainly more realistic than ideal ones.

satisfied byy may be abbreviated to It was early recognized that an equilibrium which is a
strict minimum of the totalkinetic plus magneticenergy
Li(y)=Ly(1/y), (30)  would be stable, and this provided some sufficient criteria for

stability. Unfortunately, equilibria simple enough to be ex-
wherel; andL, are linear differential operators. It is known pressed analytically are few, even in the restricted class of
that if the solution cannot be extended pdst, because it axisymmetric static ones, when they satisfy the more man-
blows up there}y(_)|—o. This means that ¥/ and there- ~ageable Grad-Shafranov equation. Thus, more often than not,
fore L,(1/y) remain bounded a_ . Writing L,(1/y)=F,  all criteria of stability must be studied numerically.
the equation becomds;(y)=F, for a bounded independent ~ Recently, a simple study of the symmetries of the MHD
term F; since all the terms of the equation are well behavedsystem has yielded a method for generating whole families
neary_, andL, is linear, the solution cannot blow up at of ideal equilibria starting from one provided with a foliation
_, against the first hypothesis. Thysis defined in the ©0f magnetic surfaces, i.e., surfaces everywhere tangential to
whole interval (g, ;]. Thaty cannot vanish anywhere fol- the velocity and magnetic field vectors: most classical equi-
lows from a similar argument, because they tould blow libria satisfy this condition, which is also very desirable for
up whileL,(y) would remain smooth, against the propertiesmagnetic confinement. These families keep the same folia-
of linear equations. That the solution behaves well at the axi§on of the original equilibrium, but both velocity and field
o follows from a study of the form of the equation coeffi- may vary widely otherwise. This paper begins by providing a
cients, which are integrals in the magnetic surfaces, that weimpler formulation, using Elsaer variables, of the tranfor-
will not detail here. Thus there exist really unique solutionsmation mentioned above, which will be useful later, and
yielding critical points of the functiond. It is not as simple ~ Showing with @ number of examples the rather surprising
as in the energy case to prove that they correspond tBroperties of equilibria one may o_btaln from _classwal_, usu-
minima, but this is strongly supported by the form of the ally static, ones. However, our main purpose is, by using the
positive functionaD; certainly rapidly varyingy yield arbi-  family of equilibria created using this process, the compari-
trarily large dissipation, so that there is no chanc®dfav-  son of the different notions of stability.

necessarily those which are energy minima among our restricted family,
and those equilibria which minimize ohmic and viscous

P,-AP;—Q;-AQ, losses when some small diffusivity is added, presumably

J Vo do=0, (3D lasting longer under these slightly resistive conditions. Our

Sy intuition tends to think that these properties are roughly

equivalent. The variational calculus needed to calculate these
extrema is far easier than the general one because of the
more restricted class of equilibria under study. The results
B.-AV;+V,-AB; Ciny ; PR
J o=0. (32) are somewhat surprising: none _of the_se notions implies any
Sy IVl other, so that, for example, a minimu@m our clas$ of en-
ergy may be linearly unstable, thus highlighting how de-
Static equilibria satisfy E¢(27), as well as those, detailed in manding is the condition of maintaining the magnetic sur-
Sec. |lll, of the form V=(Vi(x,y),Vy(x,y),0, B faces intact. Neither is this minimum more efficient at
=(0,0B5(x,y)). These, as stated, can be unstable even iminimizing ohmic losses than other members of the family.
the continuous spectrum. Field-aligned velocities do not inAlso, equilibria with a stable continuous spectrum may not

which means
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be energy minima even within our family. The examplesto provide counterexamples. It is hoped that these results
showing that these concepts are different are very simplenay be conceptually useful to clarify the different notions of
static equilibria, equilibria where magnetic field and velocity stability; more generally, this family of equilibria could
are orthogonal, and those where they are aligned are enougiove useful to test other magnetohydrodynamic properties.
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